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Real-Time Robot Motion Planning 
Using Rasterizing Computer Graphics Hardware 

.led Lengyel*, Mark Reichert*, Bruce R. Donaldl and Donald P. Greenberg ~ 

Abstract 

We present a real-time robot motion planner that is fast and complete 
to a resolution. The technique is guaranteed to find a path if one 
exists at the resolution, and all paths returned are safe. The 
planner can handle any polyhedral geometry of robot and obstacles, 
including disjoint and highly concave unions of polyhedra. 

The planner uses standard graphics hardware to rasterize config- 
uration space obstacles into a series of bitmap slices, and then uses 
dynamic programming to create a navigation function (a discrete 
vector-valued function) and to calculate paths in this rasterized 
space. The motion paths which the planner produces are minimal 
with respect to an L l (Manhattan) distance metric that includes 
rotation as well as translation. 

Several examples are shown illustrating the competence of the 
planner at generating planar rotational and translational plans for 
complex two and three dimensional robots. Dynamic motion 
sequences, including complicated and non-obvious backtracking 
solutions, can be executed in real time. 

1 Introduction 

Motion planning has been regarded as a core algorithmic problem in 
computational robotics for many years, and many researchers have 
worked on finding better algorithmic solutions.[Yap85] However, 
despite the fact that all of the key elements in planning robot motion 
substantially overlap with computer graphics interests, the problem 
has not been presented as a computer graphics topic. 

The classical formulation of the Find-Path or Piano Mover's 
problem is stated as follows: given an arbitrary rigid polyhedral 
object, P ,  and polyhedral environment, find a continuous collision- 
free path taking P from some initial configuration to a desired goal 
configuration. 
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We view this motion planning process as an algorithmic en- 
deavor analogous to hidden surface removal in computer graphics. 
First, precise combinatorial solutions exist, but rasterized, approx- 
imating techniques (such as z-buffer algorithms) are faster and 
more effective. Second, such approximation algorithms can be 
provided with massively parallel, specialized hardware support. 
Instead of concentrating on more efficient, combinatorially exact 
algorithms, the end-user is more effectively served by (a) choosing 
good representations for the geometric constraints, (b) selecting 
local, isotropic geometric algorithms that are easily parallelizable, 
and (c) providing or using appropriate hardware support to make 
the algorithms run very fast. 

Our algorithm is based on the configuration space representations 
that are due to Lozano-Prrez [LPW79], and we use a local, isotropic 
search algorithm [Don87][Don84] to obtain a very fast motion 
planning algorithm that runs on standard graphics hardware. Two 
parts of the local algorithm we present here are very similar to the 
work of [DT88]. The paths produced have minimal length with 
respect to an L~ distance metric imposed on the rasterization which 
treats translational and rotational movements equally. 

In addition to being simple, the algorithm is complete to a 
resolution (of the rasterization), and while inherently "local", does 
not suffer from local minima. Many other fast motion planning 
algorithms, in particular, potential field methods, get "stuck" in 
local minima and therefore cannot be effectively used to plan paths 
for complex, concave, or disconnected robots. While these other 
algorithms run well when the robot is (a) small and convex relative 
to the environment, or (b) when the space of solutions is "very 
dense", our planner may be more effective in more complicated 
cases. 

For computer graphics applications, the visual impact of the 
robot motion is important. Since the motions are time-dependent 
and complex, real-time graphical playback is desirable to assess the 
motion sequence, including the complicated back-tracking paths 
which may be necessary to obtain a solution. 

In Section 2 a brief overview of the historical approaches used 
by the robotics community is presented. Section 3 describes 
our algorithm in detail. Section 4 presents the results of the 
implementation for several specific cases. Section 5 presents the 
conclusions and topics for future research. 

2 Background 

The Piano Mover3" problem has been approached in many ways. 
We present below a brief overview of the two major approaches used 
by the robotics community, the configuration space and potential 
field methods, and discuss the advantages and limitations of each 
method. 
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2.1 Configuration Space Methods 
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Figure l :  Planar Object. 

Consider an object moving in the plane. The object's configuration 
can be uniquely described by its position in x and y and its 
orientation in 0. The configuration space for such an object is the 
set of all such possible configurations (x, y, 0) where (z, y) E R 2 
(the real plane) and 0 E S ~ (the unit circle). The configuration 
space for an object moving in the plane is thus R 2 × S ~ (Figure 1). 
( In robotics terminology, configuration space is often abbreviated 
to c-space. ) 
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Figure 2: Two-link Arm. 

As another example of a configuration space, consider a robot 
with a two-link arm in the plane anchored at apoint. The angle of the 
base arm 00 and the angle of the free arm 0~ completely determine 
the configuration of the robot (Figure 2). The configuration space is 
S l x S 1 , and a particular configuration is a point (00, 01) E S ' x  S 1 . 

The problem of moving a complex robot through a physical 
environment can be transformed to the problem of moving a point 
through a c-space environment. The obstacle constraints in real 
space are encoded by "enlarged" obstacles in configuration space. 
If the reference point of the robot is outside of the enlarged c-space 
obstacles, then the robot itself is outside of the obstacles in the 
physical workspace. Lozano-Prrez generates the c-space obstacles 
using a Minkowski sum of the robot and the environment. In a 
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Minkowski sum all the points of one set are offset by the points of 
another set (Figures 3 and 4). For sets represented by polygons, 
the Minkowski sum can be thought of as the "convolution" (set 
sum) of the obstacle polygons by the "negated" robot polygons. 
This "convolution" can be computed using a convex hull algorithm. 
This algorithm is suboptimal in the plane l, and in the case where 
the generating polygons are convex, Lozano-Prrez gives a method 
for computing the Minkowski sum in linear (O(n)) time. The 
important ideas of c-space slices and c-space slice projections, 
which will be described in more detail later, were also introduced. 
For a more thorough introduction, we refer the reader to previous 
papers [Loz80] [LPW79] [Udu77]. 

Other researchers have used rasterizing techniques in c-space. 
For example, Lozano-Prrez [Loz87] used a representation of the 
obstacles derived in [Loz83],[Don87] and encoded them in a bitmap 
of the c-space. The search algorithm used was not local, isotropic, 
nor trivially parallelizable, and no hardware support was available. 

Dorst and Trovato used a rasterized c-space approach to plan for a 
two-link arm[DT88]. They described the motion-planning problem 
in a differential geometry framework, with a metric topology 
imposed on configuration space and geodesics COfTesponding to 
optimal paths. They discretized the c-space and used cost wave 
propagation and gradient-following to find the optimal paths. The 
second two parts of the algorithm we present are very similar to 
their work. Dorst and Trovato do not, however, address the problem 
of generating the c-space obstacles (the first step in our algorithm.) 
We also emphasize the hardware context of the algorithm. 

Donald described a motion planning algorithm that is aprovably- 
good approximation algorithm. It is guaranteed to find a path if one 
exists at the given resolution and all paths it returns are safe. [See 
[Don87] for a formal definition of provably-good approximation 
algorithms.] He also used constraint equations to represent the 
c-space obstacles, imposed a grid on the c-space, and then used 
several local "experts" to guide the search through the c-space. This 
algorithm had the advantage of being complete to a resolution, but a 
software implementation ran slowly on a sequential machine 2. We 
show how a variant of one part of this algorithm runs very fast on 
modem graphics hardware. 

2.2 Potential Field Methods 

Potential field methods were first pioneeredby Khatib and Le Maitre 
[KLM78]. The obstacles were represented as zero level surfaces of 
scalar valued analytic functions, i.e. f ( z ,  y, z) = 0. A potential 
field local to each obstacle, whose strength diminishes with the 
square of the distance from the obstacle, was generated. An 
arbitrary cutoff value, .f0, was assigned which corresponds to the 
distance at which the influence of the obstacle is no longer important 
(Figure 5). The potential field is mathematically described in the 
following form: 

J" ~ / : (~ ,  y, z) ~ f (~ ,  y, ~) < :o P(x ,  Z) Y, I, o f(~, y, z) > fo 

A particle moving in accordance to Newton's laws in such a 
potential field will never hit the obstacle. Khatib observed that the 
sum of the gradients is the gradient of the sum; thus adding up 
the potential fields for many obstacles results in a single function 
under whose influence the particle cannot hit any obstacle.[Kod89] 
Since the real object to be maneuvered is not a point mass, Khatib 
identified a number of "distinguished points" on the object. The 
potentials of these distinguished points were linearly combined to 

1 Note that in general, calculating a convex hull requires time O (n log n). 
2Donald used a CADR (MIT-architecture) Lisp machine 
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Figure 3: Minkowski Sum of Robot and Obstacles. Figure 4: Resultant Polygons from Minkowski Sum. 

produce a composite potential on the position and orientation of the 
rigid body. 

Figure 5: Potential field generated from obstacles. A higher density 
indicates a higher potential. 

J 

Figure 6: Bitmap potential field generated from goal. A higher 
density indicates a higher potential. 

Potential field techniques have been successful for real-time 
obstacle avoidance in changing environments, but for motion plan- 
ning, there are several limitations. One major problem is spurious 
local minima, especially for concave robots. To escape these lo- 
cal minima, one must resort to randomization techniques or other 
techniques as described below. 

Barraquand and Latombe extended this idea and used bitmaps to 
represent the obstacles. They generated a separate potential field 
for a point robot staging from a goal position (Figure 6).[BL89] 
The potential field is not a function of the euclidean distance to 
the goal, but is instead a function of the path length to the goal 
(traveling around obstacles, and not "as the crow flies".) 

They then used techniques similar to Khatib's to combine point 
potentials into a single potential field for a more complex body. 
Although the potential field for a point robot has no local minima, 
the combined potential field for a more complex robot may have 
many local minima due to "competition" of the distinguished points. 
To escape these minima, they described two possible techniques. 
Both of these techniques search for paths in c-space, with the 
potential field used as guide for the search. 

Their first technique was to "fill" the local minima, which resulted 
in a planner that is complete to a given resolution. The algorithm 
we present is similar to this planner, since it also fills c-space and is 
complete to a resolution. 

They suggested that local-minima-filling methods are effective 
only for low degrees of freedom (due to the memory requirements.) ~ 
To plan with higher degrees of freedom, they used randomization to 
get out of the local minima. This planner is capable of planning for 
robots with a great number of degrees of freedom (as demonstrated 
with multiple bars linked into chains), but is only probabilistically 
complete. 

3 Algorithm 

3.1 Overview 

The motion planner presented below is algorithmically based on the 
grid search method used by Donald [Don87] with the configuration 
space approach of Lozano-Prrez [Loz80]. It consists of four 
separate modules. 

3The memory requirements for the planner we present are very simi- 
lar to those of Barraquand and Latombe's local-minima-filling technique. 
However, we are aware through personal communication with Tom,is 
Lozano-Prrez, that a complete-to-a-resolution planner that uses techniques 
similar to the ones we present is being developed on a Connection Machine 
and appears promising for higher DOF cases. 
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The first module allocates a voxel array representation of 
c-space and rapidly computes c-space obstacles in this array 
using standard graphics rasterization hardware. 

The second module calculates a c-space navigation function 
[Kod87] with a dynamic programming technique (expanding 
wavefront of solutions.) This navigation function is essentially 
a discrete vector-valued function which, when given the 
robot's current voxel location in c-space, returns the direction 
that the robot should move to decrease its distance to the goal. 

The third module determines the shortest path from any voxel 
start position to the goal if there is a viable solution. Since the 
navigation function gives the direction to move at every cell, 
this module can calculate the path quickly, and determine in 
constant time if a path exists. 

The fourth module produces a real-time kinematic simulation 
of the robot motion. 

Each of these modules is described in more detail below. 

movement is allowed only between "free" cells, every path returned 
is valid (collision-free.) 

GENERATE C-SPACE() 
For theta = 0 to 2= by 2~/]V (N~#of~em slices) 

Foreach robotPoly in robot polygon list 

For tl = theta - dtheta to theta + dtheta 
Rotate robotPoly by tl 
Foreach obstaclePoly in environment 

Generate the minkowski sum of 

rebotPoly and obstaclePoly 
Fill minkowski polygon with 

obstacle color. 

Read filled polys from frame buffer 
Move bitmap into voxel array. 

Clear frame buffer. 
Return bitmap voxel array 

Figure 7: Pseudo-code for Generation of Discretized C-Space 

3.2 Definitions 

The following definitions due to [Loz80] are useful prior to the 
algorithmic explanations. 

A c-space obstacle, CO, is a forbidden region of c-space R 2 x S 1 . 
A slice, CO[Sl, 82], of CO is CO restricted to an angular interval 

[81, 82], i.e. C O  N (R 2 × [81,82]). 
A slice projection is the projection of C0101,02] onto the "plane" 

R 2 x {80} for 00 = (81 -q-82)/2. 

3.3 Generation of Configuration Space Representation 

We calculate the configuration space obstacle polygons by taking 
the Minkowski sum of  the obstacles and the rotated and negated 
robot as described by Lozano-Perez [LozS0] (Figure 3). We then 
use graphics polygon-fill hardware to fill the configuration space 
obstacle polygons (Figure 4). 

When the robot motion is restricted to two degrees of freedom 
(only translation in the plane) our discrete representation of c-space 
is a single bitmap with rasterized c-space obstacles. However, when 
rotation is allowed, the configuration space is represented by a set 
of bitmaps, where each bitmap is a slice projection representing the 
configuration space for the angular interval [01, 82]. 

While generating a representation of c-space at exactly one 
orientation is trivial, generation of a conservative, discrete, repre- 
sentation of c-space over some angular interval is more difficult. 
Our goal is to ensure that, in the bitmap slice representing c-space 
for the angular interval [8~, 02], no cell is labeled as free if it has 
a c-space obstacle penetrating it at any orientation in [81,82]. To 
produce a discrete representation of c-space for the angular inter- 
val [0~,Sz], we generate n discrete representations of c-space at 
equally spaced orientations within the interval [81, 82]. The angular 
increment 0 = (02 - 01)/n.  The bitmap slice representation for 
the angular interval [81,02] is the union of all of the sub-intervals. 
Figure 7 is a pseudo-code implementation of this method. 

Note that the bitmap slices are conservative. If  any part of 
an obstacle penetrates a cell, then the whole cell is labeled with 
"obstacle." This discards some potential paths, but enforces the 
complete-to-a-resolution property of the planner. If two adjacent 
cells are labeled as being "free" of obstacles, then the path between 
them is free, since if there were any obstacle in the way, one or 
both of the cells would have been labeled with "obstacle," which 
would contradict the assumption of both cells being "free". Since 
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3.4 Calculation of Navigation Function 

A dynamic programming technique is used to expand a wavefront 
of solutions from the goal, with a queue to keep track of the current 
wavefront.[DT88] Each element in the queue holds a position in 
the rasterized environment and a current length of the path from 
the goal position. An element is dequeued, its location in the 
environment is filled with the current length, and then all of its free 
space neighbors that have not yet been filled are put on the end of 
the queue with an incremented distance. 

This algorithm is essentially isomorphic to the "Bumble Strategy" 
in Donald's 1984 algorithm [Don84] [Don87], which operated as 
follows: a search node N on a c-space grid is dequeued, and its 
c-space grid neighbors are generated, The reachable, unexplored, 
free-space neighbors are put on the end of the queue. Each new 
neighbor M contains a backpointer to N,  and N ' s  direction from 
M.  This back pointer (and back-direction) corresponds precisely 
to our navigation function. Note the Bumble Strategy is simply 
a breadth-first-search (BFS) from the start (or goal.) We regard 
dynamic programming and BFS as "dual" algorithms in that BFS 
from the goal yields our dynamic programming algorithm. 

FILL NAVIGATION FUNCTION(goal location) 

Enqueue goal location with distance = 0 

While queue is not empty 

Dequeue element F 
Label F's location with F's distance 

Enqueue all neighbors of F that are not 
obstacles and that have not yet been 
filled with distance = distance + 1 

Figure 8: Pseudo-code for Navigation Function Fill 

The initial element placed in the queue is the goal node with 
a path length of zero. The algorithm takes that node out of the 
queue, fills its location in the rasterized environment with zero, then 
queues up all of the neighboring nodes with a path length of one. 
The wavefront continues out like a "brush fire", spreading around 
the C-space obstacles, in a way similar to flood-fill or seed-fill 
algorithms used in computer paint programs [Pav8 I]. Each cell that 
can be reached from the goal is set just once (Figures 9 and 8.) 
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Figure 9: Calculation of Navigation Function. 
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Figure 10: Path Generation. 
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Note that with the three-degree of freedom case (two translations 
plus rotation) that the fill expands upward and wraps-around in the 
theta direction as well as expanding in the x and y directions. 

The running time is proportional to the number of free cells in the 
environment. Complicated scenes which consist of many obstacles 
have fewer free cells. Thus, paradoxically, more complicated 
scenes are quicker to fill! 4 

3.5 Path Generation 

Since the navigation function is generated by a breadth-first search 
through the rasterized configuration space, it yields the shortest 
path from the goal to any reachable position in the configuration 
space (where a "shortest path" is defined to be one passing through 
a minimal number of voxels.) [See [DT88] for other metrics.] To 
get closer to the goal from any start position, the robot moves to 
the lowest-numbered neighboring cell. This corresponds exactly 
to following the breadth-first search tree to the goal. (We call this 
process "surfing", since the robot is simply sliding down the "hills" 
of the potential function,) 

If there are multiple cells which have the lowest number, any 
one can be picked, since each would correspond to a path with the 
same number of moves needed to reach the goal. Given a choice 
between a rotation (a move in the theta direction) or a translation (a 
move in the x or y direction), our algorithm selects the translation 
option to minimize rotation(Figures 10 and I 1.) 

By construction, every cell that can be reached from the goal 
has a neighbor with a lower number than itself (the cell which 
was queued to label it.) Thus, there are no local minima in the 
navigation function. The robot can just follow the bread-first search 
tree to the goal and not worry about getting stuck. The following 
of the search tree is fast, running in linear time with respect to path 
length. This path generation technique corresponds precisely to 
gradient following[DT88][Kod87]. 

3.6 Display Routines 

A program has been implemented which uses standard graphics 
hardware acceleration to generate dynamic real-time playback of 
the robot motion, allowing the viewer's position to be interactively 
modified. Two sequential pre-processing steps are required, the 
rasterization of c-space and the computation of the navigation 
function. This discretized configuration space must be recomputed 

4Also observed by [DT88]. 

GENERATE PATH(start location) 

let C = cell corresponding to start location 
let P = NULL 

if C was not reached by fill (label is blank) 

return CANNOT REACH GOAL 
else 

while C is not at goal 
add C to path P 
pick lowest numbered neighbor, L 

let C = L 
return P 

Figure 11: Pseudo-code for Path Generation (Surfing) 

for every change in the obstacle definitions or the robot geometry. 
The navigation function is recomputed only if there is a change 
in the goal position. Since the path generation is so fast, this can 
be computed on-the-fly, and the dynamic sequences of the robot 
motion can be displayed. 

3.7 Use of Hardware 

While our algorithm is the slowest possible on serial machines, it is 
very fast using parallel or specialized hardware. 

Each of the above modules can benefit from use of specialized 
hardware. In our implementation only the first, the generation 
of the c-space obstacles, and the fourth, the kinematic simula- 
tion, use specialized graphics hardware. The second module, the 
flood-fill, uses a very local operation and is ideal for a distributed 
computation[BL89]. The third module, the gradient following or 
bread-first-search-tree following, is essentially a fast serial opera- 
tion. 

4 Examples 

The algorithm was tested in several obstacle environments with 
robots and obstacles of varying shape and convexity. Experimen- 
tal timings for each of these examples are presented in Table 1. 
Note 'that once the preprocessing steps for the configuration space 
and navigation function are complete, the path-generation algo- 
rithm runs almost instantaneously, and real-time motion display is 
possible. 
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Problem Figure 
Moving Planar Robot 13b 
Backtracking Planar Robot 13e 
Stuck Planar Robot 13f 
Piano (Room 1) 14a 
Piano (Room2) 15a 

She C-space 
256x256x120 22.6 
256x256x120 * 
256x256x120 * 
192x192x180 26.0 

92x92x90 8.1 

Fill Surf Display 
44.1 0.11 35.8 

* 0.11 50.3 
* 0.01 0 

50.2 0.05 27.1 
8.1 0.04 7.2 

Table 1 : Table of experimental timings. Times are given in seconds, Processing and display was performed on a Hewlett Packard 835 with a 
Turbo-SRX graphics display. The precalculations whose times marked as "*" for Figures 13e and 13f were already performed for Figure 13b 
and did not need to be repeated. 

4.1 C o m p l e x  R 2 × S 1 

This example illustrates the motion of a complex, concave planar 
robot, Note the triangular peg obstacles in the upper left-hand 
comer (Figure 13b.) Since the search algorithm does not rely on a 
heuristic distance to the goal, backtracking paths are easily found 
(Figure 13e.) In this example, the robot is not able to turn around 
until it backtracks all the way to the right side (where the region is 
devoid of the pegs preventing the turning on the left side). 

If the search backwards from the goal (the navigation function) 
reached the start point, then a path exists from the start to the goal, 
otherwise one does not exist at the given resolution. With one array 
reference, it is known whether or not a path can be found from the 
start configuration to the goal. In Figure 13f, the robot's "head" is 
stuck between the peg and the wall, and thus the algorithm returns 
with the result that no path exists. 

4.2 R 2 x S 1 motion for 3D robots 

Many three-dimensional robots have pieces which are quite distinct 
vertically. A piano, for example, has small legs and a large main 
body. By creating two classes of environmental objects, one class 
of objects which obstruct the legs, and the other which obstruct the 
body, the algorithm for planar problems can be extended by object 
space partitioning (3~D1 representation.) 

Piano Body 

Piano Legs 

Figure 12: Piano Environment Partitioning. 

The rasterization is performed as before, with the exception 
that the body is now convolved only with the body obstacles, and 
the legs only with the leg obstacles. The union of the leg and 
body c-space obstacles is used to create one bitmap. Since the 
leg obstacle is not convolved with the body when generating the 
c-space obstacles, the piano body can move over it, while the legs 
maneuver around it (Figure 14a.) 
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5 Discussion & Conclusion 

We have presented a robot motion planner that is fast and, unlike 
other fast motion planners, is based entirely on complete and 
provably-good approximation algorithms. The algorithm is based 
on part of Donald's original algorithm [Don87], which was initially 
considered to be slow and ineffective for real-time motion planning, 
but when modified to run on current graphics hardware is actually 
quite fast. 

The planner can handle any polyhedral geometry of robot and 
obstacles, including disjoint and highly concave unions of polyhe- 
dra. 

The planner is very general and is guaranteed to find a path if 
one exists at the resolution. In constant (O(1)) lime, it detects if  a 
path exists from the start location to the goal, or between any two 
points through the goal (compare [DTS8].) 

The method is memory intensive, but for many problems the 
resolutions can be made much lower, especially in the rotational 
dimension. Storage can also be reduced by eliminating the navi- 
gation function value, and only storing a direction at each point, 
requiring as few as three bits per cell (for the 3DOF case.) 

The method is resolution dependent. The higher the resolution, 
the closer the robot can squeeze by the obstacles. The lower the 
resolution, the lower the memory requirements. 

We believe that we have demonstrated that provably good ap- 
proximation algorithms for kinematic motion planning can be made 
to run very fast, if the algorithms are local, isotropic, and can take 
advantage of special purpose computer graphics hardware for tasks 
such as rasterization (poly-fill), flood-fill, and gradient-following. 

We conjecture that the fastest solutions will involve algorithms 
similar to ours, that is, characterized by use of 

1. Configuration space representations such as [LPW79]. 

2. Local, geometric, isotropic, parallelizable search algorithms 
such as IDon87]. 

3. Appropriate hardware support for geometric computation. 

In robotics, and in animation, in addition to kinematic planning 
and simulation, one also desires to plan robot motions with full dy- 
namics. In recent work, [CDRX88][DX89][DX90] have developed 
provably good approximation algorithms that generate motions that 
(1) avoid obstacles, (2) obey dynamic bounds on generalized forces 
and velocities, (3) respect full Lagrangian rigid body dynamics 
equations of motion, and (4) are provably close to optimal-time. 
These algorithms are also grid-based, and currently run very slowly 
on traditional architectures. We hope that by using techniques 
similar to those we propose in this paper, that these algorithms 
can be made to run quickly when modified to exploit appropriate 
hardware support. 

We hope that this paper illustrates the substantial overlap in 
research areas between the graphics and robotics communities, and 
fosters collaborative efforts to create more innovative solutions. 
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Figure 13a: Key to Robot Positions. Figure 13b: Moving Planar Robot. 

Figure 13c: First Leg of Backtracking. 

B I 
! 

Figure 13d: Last Leg of Backtracking. 

'1 

Figure 13e: Backtracking Planar Robot. 

| - 
. 

Figure 13f: Trapped Planar Robot. 

13a is a key to the start and goal locations of the subsequent figures. In 13b, the robot follows the gradient of the potential 
function to the goal (which is the same as following the breadth-first search tree.) 
In 13c, the robot first moves from the start to the right, since there is not enough room between the pegs on the left to 
reorient. The robot then has enough room to reorient (the right side is not blocked by the small pegs as on the left.) 
Finally, in 13d, the robot can squeeze by the small pegs, and obtain the goal position and orientation. 13e shows the 
entire motion of 13c and 13d. The algorithm is exactly the same as in 13b, simply following the breadth-first search tree. 
In 13f, no solution exists. Our planner detects this in constant O(1) time. 
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Figure 14a: Moving Piano. Figure 14b: Moving Piano from Alternate Start. 
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Figure 15a: Piano in Room 2. Figure 15b: Piano in Room 2 with Alternate Start. 

Figure 16: Moving Piano in 3D. 
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